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Abstract—The da Vinci Research Kit (dVRK) has been in-
stalled at over 25 research institutions across the world, forming
a research community sharing a common open-source research
platform. This paper presents the dVRK software architecture,
which consists of a distributed hardware interface layer, a real-
time component-based software framework, and integration with
the Robot Operating System (ROS). The architecture is scalable
to support multiple active manipulators, reconfigurable to enable
researchers to partition a full system into multiple independent
subsystems, and extensible at all levels of control.

I. INTRODUCTION

Telerobotic systems have a proven track record in several

application domains, including minimally-invasive surgery,

space exploration, and handling of hazardous materials. How-

ever, most real-world systems still use direct teleoperation,

where a human controls each action of the remote robot, even

though research in semi-autonomous teleoperation, including

supervisory control, shared control, and other co-robotic

methods, has been active for decades. One obstacle had been

the lack of a robust common research platform, but this has

recently been addressed by the availability of systems such as

the da Vinci Research Kit (dVRK)[1] and Raven II robot [2].

This paper focuses on the software architecture of the dVRK,

which is currently in use at more than 25 research centers

around the world. The choice of architecture was influenced

by the following key requirements:

1) Scalability to multiple master and slave robot arms. A

full da Vinci System typically contains six active robot

arms and four passive robot arms.

2) Easy reconfiguration, such as adding or removing arms

or even splitting the system into multiple independent

setups.

3) Use of a familiar software development environment,

such as C++ on a Linux PC, for all levels of the software

architecture.

4) Real-time performance for high-frequency, low-level

robot control.

5) Ability to integrate with other high-level robot compo-

nents and development environments, such as Matlab

and Python, via middleware.

These requirements led to the adoption of a centralized

processing and distributed I/O architecture [3] that enables all

processing to be performed on a personal computer (PC). The

dVRK uses C++ on Linux, though most of the software is

portable to other platforms. The key layers of the software

architecture, shown in Fig. 1, derive from the following design

decisions, which are presented in subsequent sections:

1) Use of a high-bandwidth field bus that supports daisy-

chain connection, multicast communication, and an

efficient (low overhead) software interface, which satisfies

the requirements for scalability and reconfigurability. This

is discussed in Section IV, which presents IEEE 1394a

(FireWire) as the primary field bus for the dVRK.

2) A real-time, component-based framework that enables

high bandwidth, low latency control. Section V describes

the design of the real-time software layer for the

dVRK, which is based on the open source cisst libraries

developed at Johns Hopkins University (JHU) [4], [5].

3) Bridge or proxy components that provide interfaces

between the real-time component-based framework and

other systems. Initially, this was provided by a custom

middleware [6] based on cisst and Internet Communica-

tions Engine (ICE), but has since transitioned to Robot

Operating System (ROS) [7], as discussed in Section VI.

Fig. 1: da Vinci Research Kit (dVRK) control architecture



II. RELATED WORK

There has been an increasing need for open robot platforms

for research. We consider a platform to be “open” if it gives

researchers direct access to all sensors and actuators and allows

them to freely write/modify all levels of the control software.

This section reviews the control architectures of three widely

available open robot platforms.

The Whole Arm Manipulator (WAM, Barrett Technology,

Inc., Cambridge, MA) [8] is a 7 degree-of-freedom (DOF)

cable-driven robot with an optional three-finger Barrett hand.

It supports torque control of the robot and thus is an ideal

platform for implementation of advanced control algorithms.

The robot arm has a distributed motor controller module,

called Puck, installed on each joint and interconnects them

through a CAN bus at 1 Mbps. Robot control can either be

done with the internal Linux control computer with Xenomai

patched real-time kernel or with an external computer through

the exposed CAN bus port. The manufacturer also released

an open-source C++ library, libbarrett, which contains CAN

bus communication and kinematics routines. Recently, [9][10]

implemented control architectures that use the Robot Operating

System (ROS) for high level interface and the Open Robot

Control Software (OROCOS) for low-level control.

Another important open robot platform is the Personal Robot

2 (PR2, from Willow Garage, Palo Alto, California). The

robot features an omni-direction wheeled base, two torque

controlled 7-DOF arms with 1 DOF gripper, an actuated

head and other sensors (e.g. laser sensor, stereo camera). PR2

motion control comprises Motor Controller Boards (MCB)

interfacing motors and encoders, EtherCAT field bus, hard

real-time control software and a non-real-time ROS-compatible

software stack. The MCB closes a current PI-control loop at

100 kHz on a FPGA-based design. The main motor control

PC runs a PREEMPT RT patched Linux kernel for real-time

performance[11]. A real-time process handles EtherCAT com-

munication, servo-level control and publishes robot states via a

real-time safe ROS publisher. To add flexibility and extensibility,

a controller manager is implemented to dynamically load real-

time compatible controller plugins. Overall, the design provides

a real-time safe solution compatible with ROS, as well as extra

flexibility through the use of plugins. However, the real-time

code is robot specific and cannot easily be reused.

In the medical robotics field, the Raven II Surgical Robotics

Research platform [2] is an open architecture, patient-side robot

for laparoscopic surgery that consists of two cable-driven 7

DOF arms. It was a collaborative effort between the University

of Washington (UW) Biorobotics Lab and the University of

California Santa Cruz (USCS) Bionics lab, and was based on

Raven I developed at UW [12]. The UW/USCS team built

several Raven II systems that were installed in other research

labs and subsequently spun out production to a startup company,

Applied Dexterity Inc, that has continued to deliver systems.

The software is publicly available under the limited GNU public

license (LGPL). It utilizes a standard Linux kernel, with the

CONFIG PREEMPT RT patch set, so that real time control

software can run in user space and be coded in C or C++.

The control loop currently runs at a deterministic rate of 1

kHz. Key functions include coordinate transformations, inverse

kinematics, gravity compensation, and joint-level closed loop

feedback control. The link between the control software and the

motor controllers is a custom USB interface board with eight

channels of 16-bit analog output to each joint controller, and

eight 24-bit encoder inputs. The board can perform a read/write

cycle for all 8 channels in 125μs[13]. The Raven II has been

integrated with ROS, which allows easy integration with other

robotic software.

III. DVRK SYSTEM OVERVIEW

Fig. 2 summarizes the open source da Vinci Research Kit

platform, consisting of the first-generation da Vinci system

hardware, motor controller electronics, FPGA firmware and

a component based control software stack. The rest of this

section gives a brief introduction of the hardware, electronics

and firmware of dVRK to provide the background information

for subsequent sections. Interested readers are referred to [1]

for more details.
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Fig. 2: Overview of the da Vinci Research Kit telerobotic

research platform: Mechanical hardware provided by da Vinci

Surgical System, electronics by open-source IEEE-1394 FPGA

board coupled with Quad Linear Amplifier (QLA), and software

by open-source cisst package with ROS interfaces [1].

The mechanical hardware can either be obtained from

retired first-generation da Vinci Surgical Robot Systems or

as a Research Kit provided by Intuitive Surgical, Inc. The

Research Kit consists of the following components: two Master

Tool Manipulators (MTMs), two Patient Side Manipulators

(PSMs), a High Resolution Stereo Viewer (HRSV), a footpedal

tray, and documentation (e.g., wiring diagrams, connector

pinouts, kinematic parameters). The full da Vinci System may

include a third PSM and also includes an Endoscopic Camera

Manipulator (ECM), a stereo endoscope, and the passive Setup

Joints (SUJs) that support the PSMs and ECM.



The control electronics is based on two custom boards: (1)

an IEEE-1394 FPGA board, and (2) a Quad Linear Amplifier

(QLA). The schematics, firmware, low-level software interface,

and documentation are available on a public git repository.

These boards were designed for general mechatronics use, but

are well suited for controlling the dVRK. The IEEE-1394

FPGA board contains a Xilinx Spartan-6 FPGA, an IEEE-

1394a (FireWire) physical layer chip with two 6-pin connectors,

and (as of Rev 2.0) an Ethernet MAC/PHY controller with a

single 10BASE-T/100BASE-TX port. The QLA attaches to the

IEEE-1394 FPGA board and provides all hardware required

for current (torque) control of four DC brush motors, using a

bridge linear amplifier design.

The FPGA firmware is implemented in Verilog with three

major responsibilities: (1) exchanging data with the PC via

IEEE-1394 or Ethernet, (2) interfacing to I/O devices such as

encoders and digital-to-analog converters (DACs) for output

motor currents, and (3) hardware-level safety checking, such

as a watchdog timer and motor current safety check.

The following three sections describe the layers of the

software architecture presented in Fig. 1, which focus on

hardware interface, real-time control, and system integration.

IV. SCALABLE AND RECONFIGURABLE DISTRIBUTED

HARDWARE INTERFACE

No matter what software architecture is used, control

programs must fetch data from hardware sensors and then send

commands to actuators through a hardware communication

channel. While the hardware interface can be provided by

boards that are installed inside a computer workstation, it

is more convenient to distribute the hardware interfaces via

a field bus and is especially important for scalability and

reconfigurability. This section presents the design goals, an

analysis of potential options, and implementation details.

A. Design Goals

One of the most desirable properties of a field bus is to

provide deterministic performance with low latency. In our

experience, the largest factor that influences latency is the

software overhead on the control PC. Certainly, one factor

is the choice of communication protocol; for example, it is

well-known that the User Datagram Protocol (UDP) has lower

overhead (lower latency) than Transmission Control Protocol,

Internet Protocol (TCP/IP). But, in our experience, the most

critical factor is to minimize the total number of communication

transactions performed by the PC. This motivates use of a field

bus that supports broadcast, multicast and peer-to-peer transfers.

A second desirable property is for the field bus to support

“daisy chain” connection; that is, where one cable connects from

the PC to the first interface board, another cable connects from

the first board to the second board, and so on. This enables

the bus topology to scale with the number of manipulators

and facilitates reconfiguration to support different setups. For

example, the full da Vinci system, with 6 active manipulators

and a passive setup joint structure, requires 13 FPGA/QLA

board sets to control the full system (two 4-axis board sets

for each active manipulator and one board set for all passive

setup joints). Thus, scalability is an important requirement.

At the same time, reconfigurability allows multiple users to

simultaneously work on a single system by simply introducing

another control PC and changing the network cabling and

safety/e-stop chain.

Finally, it is necessary for the field bus to provide sufficient

bandwidth to support all the hardware on the bus, especially

when the goal is to perform even the high-frequency, low-level

control on the PC.

B. Design Analysis

Several field buses are available, such as Controller Area

Network (CAN) bus, Universal Serial Bus (USB), Ether-

net/EtherCAT, and IEEE 1394 (FireWire). The CAN bus is an

excellent protocol for control purposes but is limited by its

bandwidth (1 Mbps). Although USB provides high bandwidth

(480 Mbps for USB 2.0), its polling mechanism means that

it is not ideal for real-time applications[14] and it has a poor

scalability. Ethernet has sufficient bandwidth (10/100/1000

Mbps) but is typically wired in a “star” topology; supporting

a daisy-chain connection would require a high-speed switch

on each interface board. In EtherCAT, a master node (PC)

periodically initiates a transaction; slave nodes receive, forward

and append data packets with the aid of dedicated hardware

and software. This design results in the ability to communicate

with 100 axes in 100 μs [15]. FireWire is a high speed field

bus (up to 400 Mbps for IEEE-1394a) featuring peer-to-peer

communication, broadcasting, and physical repeaters at each

node to support daisy-chain connection.

While EtherCAT satisfies all the desirable properties of a field

bus (i.e., minimize PC transactions, daisy-chain configuration,

and high bandwidth), it was a relative newcomer when the

design decision was made in 2008 and even today remains

a proprietary implementation. We therefore selected IEEE-

1394 (FireWire), which also satisfies all desired properties,

but requires more implementation effort to reduce the number

of transactions on the PC, as discussed in the next section.

However, while FireWire was a reasonable option in 2008,

today it is less widely available than alternatives such as

Ethernet and USB. Thus, we recently added an Ethernet port

to the FPGA board so that it can act as a “bridge” between

the PC and the FireWire network, as also described below.

C. Implementation

The most straightforward protocol over the FireWire bus

is for the PC to individually read from, and write to, each

controller board; however, this solution does not scale well

because the overhead on the PC increases linearly with the

number of boards. We solved this issue by taking advantage

of the FireWire broadcast and peer-to-peer communication

capabilities [16]. Each control cycle begins when the PC

broadcasts a query command to all boards and then waits

for 5N μs, where N is the total number of boards. Upon

receiving the query command, each board broadcasts its status



(feedback) packet after waiting for 5n μs, where n is its node-

id (n = 0 . . . N − 1). The PC is configured to ignore these

responses, but the FPGA firmware on each board maintains

a data structure that contains the status received from each

board (because the FireWire link layer is implemented in the

FPGA, transaction overhead is negligible). After waiting 5N
μs, the PC reads the complete status information from one

board, then computes the control output and broadcasts it as a

single packet. Each board extracts its own commands from this

packet based on its board ID. This protocol has been shown

to enable control rates up to 6 kHz on a dVRK with 8 control

boards [16] and is routinely used to achieve 3 kHz control

on a full da Vinci at JHU. We have, however, discovered that

some PC FireWire adapters do not properly handle the stream

of broadcast packets; thus, we also provide an intermediate

protocol where the PC individually reads the status from each

board and then broadcasts the control output to all boards in a

single packet. With this protocol, the maximum control rate is

about 1.8 kHz.

As noted above, the FPGA board now includes an Ethernet

port to enable it to act as a “bridge”. Specifically, the PC

can send and receive packets via Ethernet to the first board

and then the FPGA firmware on that board communicates

with the rest of the boards via the FireWire network. A

prototype implementation of the Ethernet/FireWire bridge

design is presented in [17]; the implementation is currently

being improved to enable any board to serve as the bridge,

rather than requiring a dedicated board.

Figure 3 presents a UML class diagram of the interface

software that supports the above design. Two bases classes

are defined: (1) BasePort represents the physical fieldbus port

resource, which, depending on the implementation, can be a

Firewire or Ethernet port, and (2) the abstract BoardIO class

that represents the controller board. Currently, there is one

derived class, AmpIO, that encapsulates the functionality of

the FPGA/QLA board set.

V. REAL-TIME FRAMEWORK FOR ROBOT CONTROL

This section describes the middle layer in the software

architecture, which is the real-time framework for robot control.

This includes the Low Level Control and Mid Level Control
shown in Fig. 1. The Low Level Control implements the

joint controllers for the da Vinci manipulators and is typically

configured to run at 3 kHz. The Mid Level Control incorporates

the robot kinematics and contains a state machine that manages

the robot states (e.g., homing, idle, moving in joint or Cartesian

space); it typically runs at 1 kHz.

A. Design Goals

There are two primary design requirements:

1) A component-based framework, with well-defined inter-

faces between components, to enable different control

methods to be easily deployed to the system.

2) Efficient communication between components to support

control rates of 1 kHz or more.

Fig. 3: UML class diagram of interface software (subset of class

members shown): the design can scale and support different

field bus implementations.

These requirements influence the choice of both the execution

model and communication paradigm. Specifically, the compo-

nents can execute as separate processes (e.g., as ROS nodes) or

can execute within a single process, using multi-threading.

Communication can be implemented as client/server (e.g.,

remote procedure call) or as publish/subscribe, as exemplified

by ROS services and topics, respectively. The following section

analyzes the performance tradeoffs of these choices.

B. Design Analysis

We consider two key performance characteristics, which are:

(1) the manner in which low-frequency components handle

feedback from high-frequency components, and (2) the latency

of component communications.

First, we consider the ability to handle data exchange

between components with different execution rates in a timely

and reliable manner. The key requirement is to deliver the

latest data to the consumer component with minimum latency

and overhead. In particular, we consider the case where the

consumer component (e.g., Mid Level Control) is running at

a lower rate than the producer component (e.g., Low Level

Control). For a publisher and subscriber system using a simple

UDP implementation, the consumer’s queue can become full

and start to drop new arrival data (head-of-line blocking

problem). Besides, UDP does not guarantee data delivery.

The ROS subscriber handles this case better by dropping the

oldest data in the queue and by using the TCP protocol by

default for more reliable data transmission. However, when

multiple messages are queued on the consumer component,

the registered subscriber function is called multiple times

(depending on queue size), creating extra overhead. Setting the

receiver queue size to 1 removes this overhead but can result



in intermittent dropped packets; we have observed 4 dropped

packets out of 27,282 packets, for a 99.985% delivery rate.

Second, we consider communication latency. As shown in

Fig. 4, a ROS publisher and subscriber pair running on the

same computer has a mean latency of 244 μs and a maximum

latency of 2129 μs. The data is collected by time stamping a

ROS message before it is published, having the subscriber run

ros::spin() (equivalent to busy wait), and computing the

time difference between the wall clock time and the stamped

time in the subscriber callback function. While this latency

is negligible for systems running at slower rates, such as 100

Hz, it is substantial for control loops at 1 kHz or higher.

Moreover, this measurement uses a busy wait on the subscriber

side and consequently does not consider the additional latency

introduced by periodic calls to ros::spin(). A repeated

measurement with subscriber updates at 1 kHz is shown in Fig.

5. As expected, the mean latency jumps from 244 μs to 792

μs with a 548 μs increase, which is equivalent to half of the

node update period. To make things worse, the data does not

just flow one-way in robotic control and the subscriber (e.g.,

low-level control node) typically needs to do some computation

on the incoming sensor data and publish the results back to the

publisher (e.g., hardware interface node) for execution. This

doubles the overall latency time to around 1600 μs, which is

well over 1 ms.

Fig. 4: ROS system publisher/subscriber latency test. Hard-

ware: Intel i7-3630QM Quad-Core 2.4 GHz, 16 GB Memory.

Software: Ubuntu 12.04 LTS (Kernel 3.8.0-44-generic), ROS

Hydro.

A multi-threaded component-based robotic middleware, such

as OROCOS [18] from Katholieke Universiteit Leuven and

cisst [4] from Johns Hopkins University, can use a lock-free

shared memory implementation to minimize the overhead of

data delivery and to ensure that the latest data is available to

the consumer component. It is true that this approach can face

the same data synchronization challenge if the communicating

components are in separate threads, but there is the option to

chain execution of multiple components into a single thread

to avoid this issue, while still maintaining the advantage of

a component based architecture. In cisst, this is provided by

special component interfaces called ExecIn and ExecOut. The

parent component (e.g., I/O component) executes the child

Fig. 5: ROS system publisher/subscriber latency test, subscriber

updates at 1kHz, same hardware/software setup as Fig. 4.

component (e.g., low level control) by issuing a run event.
This feature does not require modification to the component

implementation (other than placement of the RunEvent) and

is activated by connecting the ExecIn interface of the child

component to the ExecOut interface of the parent component.

If the ExecIn/ExecOut interfaces are not connected during

system configuration, separate threads are created for each

component and they communicate asynchronously using the

same shared memory communication mechanism. Figure 6

shows the data transfer latency between two cisst components

using the ExecIn/ExecOut feature. On average, the latency

is 21.3 μs with a maximum value of 115.2 μs. OROCOS

RTT provides a similar capability via its PeriodicActivity class,

which serially executes components with equal periodicity and

priority, based on the order in which they are started.

Fig. 6: Communication latency in cisst, using ExecIn/ExecOut
for synchronous communication; components execute at 1kHz,

same hardware/software setup as Fig. 4.

C. Implementation

Based on the above analysis, we determined that a shared-

memory, multi-threaded design is better suited for the high-

frequency, low-latency control requirements for the dVRK,

which extend from the hardware interface (Section IV) to

the low-level and mid-level control. We selected the cisst
library due to our familiarity with its design; however, other



frameworks such as OROCOS would also be suitable. As

shown in Figure 7, the architecture consists of: (1) one

hardware Input/Output (I/O) component, mtsRobotIO1394 (3

kHz), handling I/O communication, (2) multiple servo loop

control components, mtsPID (3 kHz, one for each manipulator)

providing joint level PID control, (3) mid-level control compo-

nents (1 kHz, different components for each type of manipulator,

such as da Vinci MTM and PSM) managing forward and inverse

kinematics computation, trajectory generation and manipulator

level state transition, (4) teleoperation components mtsTeleop-
eration (1 kHz) connecting MTMs and PSMs and (5) a console

component (event-triggered) emulating the master console

environment of a da Vinci system. All of these are connected

using cisst provided/required interfaces. Note that although

they are independent components, the I/O component and the

PID components for the manipulators are interconnected via

the aforementioned ExecIn/ExecOut interfaces to use a single

thread, thereby guaranteeing synchronous communication and

minimal latency for maximum control performance. In this case,

the RunEvent is generated by the mtsRobotIO1394 component

after it receives feedback from the controller boards and before

it writes the control output. Thus, the mtsPID components

receive the freshest feedback data and compute the control

output, which is immediately sent to the hardware when

the mtsPID components return the execution thread to the

mtsRobotIO1394 component.

D. Community Extensions

Researchers from the University of British Columbia (UBC)

and Stanford University developed a MATLAB Simulink R©to

C++ interface for controller development on the dVRK [19].

The motivation for this work is that a typical C++ based

development cycle involves coding, compiling and debugging,

which is time consuming, and any design changes require

restart of the robot. On the other hand, MATLAB Simulink

provides a block diagram environment to design, evaluate

and even update controllers “on the fly”, thus enabling re-

searchers to rapid prototype controller designs. The developers

created a new mtsSimulinkController component to connect

the existing software framework to Simulink. This component

establishes TCP/IP connections between Simulink blocks and

cisst components. Conceptually, this is similar to the cisst-to-

ROS bridge described in Section VI-A. As a proof of concept,

the mtsSimulinkController component was used to replace the

standard mtsPID component. This extension has been shared

with other researchers in the dVRK community.

VI. SYSTEM INTEGRATION VIA ROS INTERFACES

Robot Operating System (ROS) is used to provide a high

level application interface due to its wide acceptance in

the research community, large set of utilities and tools for

controlling, launching and visualizing robots, and the benefits

of a standardized middleware that enables integration with a

wide variety of systems and well-documented packages, such as

RViz and MoveIt!. ROS also provides a convenient build system.

As noted in the previous section, ROS is fundamentally a multi-

process software architecture (though multiple nodelets can be

used within a single node). While this may have disadvantages

for real-time control, in a larger system it has the advantages

that it limits the scope of an error to a single process and

facilitates software development by minimizing the need to

restart and re-initialize the robot (i.e., as long as the robot

process is not restarted). This section presents the bridge-based

design that enables integration of the cisst real-time control

framework within a ROS environment, followed by a discussion

of the Catkin build system, and some integration examples.

A. CISST to ROS Bridge

To add support for ROS, a bridge based design was

implemented. This implementation includes a set of conversion

funtions, a cisst publisher and subscriber, and a bridge compo-

nent. The bridge component is both a periodic component

(inherits from mtsTaskPeriodic) and a ROS node. As an

mtsTaskPeriod component, it is executed periodically at a user

specified frequency and connected, via cisst interfaces, to the

other cisst components. The bridge component also functions as

a ROS node with a node handle that can publish and subscribe

to ROS messages.

To illustrate this design, consider the example in Fig. 8,

which has one cisst component connected to a ROS node via a

cisst-to-ROS bridge. The cisst component contains a provided

interface with two commands: (1) the ReadVal1 command to

read the value of mVal1, and (2) the WriteVal2 command

to write a value to mVal2. The component assigns mVal2 to

mVal1 in its periodic Run method. A cisst publisher is created

in the bridge component that connects to the ReadVal1
command and publishes to the ROS topic /Val1. Similarly,

a cisst subscriber subscribes to the ROS topic /Val2 and

connects to the WriteVal2 command. On the ROS side, the

node simply subscribes to /Val1, increments the received

value, and publishes to /Val2. At runtime, the bridge node

fetches data through the cisst interface, converts it to a ROS

message, and then publishes the message to ROS. In the

reverse direction, the ros::spinOnce function is called at

the end of the Run method, which calls the subscriber callback

function, converts data, and triggers the corresponding cisst
write command. The bridge always publishes at its specified

update rate. If the cisst component is faster than the bridge

component, the bridge only fetches the latest data at runtime,

thus throttling the data flow. If the bridge component updates

faster, it publishes the latest data at the bridge’s rate. For

certain applications that require publishing and subscribing

at the exact controller update rate, programmers can either

create a separate bridge for each cisst controller component or

directly initialize a publisher node within the cisst component

and call publish and ros::spinOnce manually.

B. ROS Ecosystem

In this subsection, the build system, ROS packages and sim-

ulation solutions that make the dVRK system ROS compatible

are detailed.



Fig. 7: Robot tele-operation control architecture with two MTMs and two PSMs, arranged by functional layers and showing

thread boundaries[1].

Fig. 8: cisst/ROS bridge example: a cisst component interfaces

with a ROS node using a bridge component. The ROS node

subscribes to Val1, increments it and publishes to Val2.

The cisst build system is based on CMake (www.cmake.org),

but for the convenience of ROS users, we created a catkin-based

solution[20] by making cisst, and other packages based on cisst,
into catkin packages. This allows ROS users to download the

dVRK code and use the ROS catkin tools to compile without

having to learn the details about how to configure and compile

the cisst library.

In addition, the MTM, PSM and Setup Joint models have

been generated in the ROS Unified Robot Description Format

(URDF) and can be used for visualization and kinematic

simulation in RViz.

Some use cases that take advantage of the ROS interface

and simulation are to use a real MTM and foot pedal as

input devices to tele-operate a simulated PSM [21] or alternate

slave robot, such as the Raven-II [2]. In fact, over half of

the researchers who have dVRK systems have used this ROS

interface for their research, mostly by implementing high-

level controllers that communicate with the dVRK mid-level

controller via ROS.

C. Community Extensions

Several researchers have taken advantage of the ROS

interface to implement higher-level controllers or to integrate

with other systems. In this section, we highlight a project

performed by a high school student during an internship at JHU.

This project was implemented with the Python programming

language, using ROS to interface between Python and the

dVRK C++ software. The student started with a straightforward

potentiometer calibration project, where the goal was to more

accurately determine the scale and offset with respect to the

incremental encoder and physical joint limits. The student

wrote a Python script to drive the joint of interest through a

list of joint positions equally spaced between the upper and

lower joint limits. At each position, the joint is commanded

to pause for 5 seconds, during which time the encoder and

potentiometer data are collected. The scale is computed by

finding the slope of the best fit line of the raw potentiometer

data to the incremental encoder data. In some cases, a scale

correction as high as 2% was observed. The offset was obtained

by using a custom-designed mechanical fixture to lock the final

four PSM axes in a known zero configuration. The offset

correction (compared to the offset values initially provided

by the manufacturer) typically ranged from 0.1 degrees to 1.5

degrees. The student’s Python program also saves the calibrated

scale and offset values back to the XML configuration file.

This software and documentation has been contributed to the

GitHub repository and has been used by other researchers with

dVRK systems. It is also interesting to note that the student

was able to perform this work using a single PSM, often while

other students were simultaneously using other parts of the

system. In fact, we had several occasions where three projects

were performed in parallel (e.g., the high school student using

one PSM, two other students each using an MTM/PSM pair).

This demonstrates the value of an architecture that supports

quick and easy reconfiguration.

VII. DISCUSSION AND CONCLUSIONS

We presented a scalable, reconfigurable, real-time and ROS-

compatible software architecture for the da Vinci Research Kit

(dVRK), currently installed at more than 25 research institutions

worldwide. The software stack is maintained by JHU, with

some contributions from the community. Over the past two

years, new software releases have occurred approximately every

six months.



The architecture was presented as three layers: (1) distributed

hardware interface via a high-bandwidth, low-latency fieldbus,

(2) real-time component-based framework with multi-threading

and thread-safe shared memory communication, and (3) high-

level integration with the ROS ecosystem. The BasePort and

BoardIO classes (and derived classes) defined in Section IV

represent the transition between the distributed hardware layer

and the real-time framework, whereas the cisst-to-ROS bridge

defined in Section VI provides the interface between the real-

time framework and the ROS environment.

The paper also briefly described community extensions

within these layers. One observation is that it is more likely

for researchers to extend the system at the higher layers (e.g.,

by integrating the dVRK with other systems and software).

Fortunately, due to the wide adoption of ROS, many researchers

have sufficient knowledge to accomplish this task. Some

research extensions require real-time performance, however,

which generally cannot be obtained via the ROS interfaces.

In these cases, researchers can extend the real-time layer, but

this introduces an additional learning curve for the cisst real-

time framework. We are currently working to simplify this

process by increasing the use of dynamically-loaded plug-in

components and Javascript Object Notation (JSON) files for

run-time configuration (as opposed to recompiling the entire

software stack). We are also aware of an ongoing effort for Real-

Time ROS (RTROS) [22], using the Ach library, which provides

an identical ROS Application Programming Interface (API)

while still meeting hard real-time constraints. In the future, this

could be a viable alternative for implementing the real-time

layer, with the benefit that the API is already familiar to many

researchers. The distributed hardware interface layer is the

most difficult to modify because much of it is implemented in

FPGA firmware (Verilog programming language); fortunately,

because it primarily manages I/O functions, it is unlikely to

require modification by researchers.

In summary, the dVRK software architecture has been

designed to provide scalable, real-time performance with an

optional (but increasingly used) bridge to the ROS environ-

ment. Researchers can implement new algorithms within this

architecture, taking advantage of the real-time framework when

required. While the dVRK already provides a common research

platform that enables better sharing of software and replication

of results, we are currently partnering with others in the

community to broaden the architecture to include other research

platforms, such as the Raven II robot and other devices.
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